CORNELL
“% TECH

Spring 2024

Practical Deep Learning

Deep Learning Frameworks // Transfer Learning

Jack Morris

1/24/2024

About this class

o We’'ll meet every Monday for 8 weeks
e No assignments, just a project at the end
e No Zoom option — please pay attention :)

e Course website https://ixmo.io/deep-learning-workshop/

e Also please ask questions on Canvas

https://jxmo.io/deep-learning-workshop/

Notes

Anonymous feedback link: bit.ly/pdi24feedback
Laptops are allowed (but please be respectful!)

Will put my slides on the course website
o https://jxmo.io/deep-learning-workshop/

https://bit.ly/pdl24feedback
https://jxmo.io/deep-learning-workshop/

Deep Learning Frameworks

Exercise

Why can’t we just use plain numpy to implement deep learning models?

Exercise

Why can’t we just use plain numpy to implement deep learning models?

(Turn to your neighbor and discuss!)

Deep learning frameworks ... in numpy

class Network(object):

def

def

__init (self, sizes):

self.num layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1l:]]
self.weights = [np.random.randn(y, X)
for x, y in zip(sizes[:-1], sizes[1l:])]

feedforward(self, a):

" "

Return the output of the network if "a" is input.

monn monn

for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)

return a

Deep learning frameworks ... in PyTorch

import torch

class Network(torch.nn.Module):
def __init__ (self, sizes):
self.layers = [
torch.nn.Linear(sizes[i], sizes[i+1]) for i in range(len(sizes))

]

def forward(self, x):
for layer in self.layers:
x = layer(x)
return x

Deep learning frameworks ... in numpy

def backprop(self, x, y):

Return a tuple " (nabla b, nabla w) representing the

nabla_b"" and

gradient for the cost function C_x.

“nabla w" " are layer-by-layer lists of numpy arrays, similar

to "“self.biases " and self.weights”

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla w = [np.zeros(w.shape) for w in self.weights]

feedforward

activation = x

activations = [x] # list to store all the activations, layer by layer def update mini batch(self, mini batch, eta):
2zs = [] # list to store all the z vectors, layer by layer "vnypdate the network's weights and biases by applying

forib Rwiinizip(salt-blasesygself wasohte)l: gradient descent using backpropagation to a single mini batch.

z = np.dot(w, activation)+b " "

The "mini_batch" is a list of tuples "(x, y)", and "eta

z3:2ppend(z) is the learning rate.
Sctivationi e Srois(z) nabla b = [np.zeros(b.shape) for b in self.biases]
tivati . d tivati
activatione:append(activation) nabla_w = [np.zeros(w.shape) for w in self.weights]
backward pass . e
for x, y in mini_batch:
delta = self.cost_derivative(activations[-1], y) * \
- delta nabla_ b, delta nabla w = self.backprop(x, y)
sigmoid prime(zs[-1]) _ A

nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta nabla_b)]
nabla b[-1] = delta) .

nabla w = [nw+dnw for nw, dnw in zip(nabla w, delta nabla w)]
nabla w[-1] = np.dot(delta, activations[-2].transpose()) . L

self.weights = [w-(eta/len(mini_batch))*nw
Note that the variable 1 in the loop below is used a little
for w, nw in zip(self.weights, nabla_w)]

differently to the notation in Chapter 2 of the book. Here,
) self.biases = [b-(eta/len(mini_batch))*nb
1 = 1 means the last layer of neurons, 1 = 2 is the -
. for b, nb in zip(self.biases, nabla_b)]
second-last layer, and so on. It's a renumbering of the

scheme in the book, used here to take advantage of the fact
that Python can use negative indices in lists.
for 1 in xrange(2, self.num_ layers):
z = zs[-1]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-1+1].transpose(), delta) * sp
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-1-1].transpose())

return (nabla_b, nabla_w)

Deep learning frameworks ... in PyTorch

model = Network()
optimizer = torch.optim.SGD(model.parameters())

(y — model(x)).backward()
optimizer.step()

Deep learning frameworks ... numpy vs PyTorch

def backprop(self, x, y):

Return a tuple "~ (nabla b, nabla w) " representing the

gradient for the cost function C_x. ~‘nabla b"" and

nabla w* " are layer-by-layer lists of numpy arrays, similar
N import torch

to "“self.biases” " and "“self.weights’

nabla_b = [np.zeros(b.shape) for b in self.biases] ()
s Network(torch.nn.Module):

def __init_ (self, sizes):
self.layers = [
torch.nn.Linear(sizes[i], sizes[i+1]) for i in range(len(sizes))

nabla_ w = [np.zeros(w.shape) for w in self.weights]

feedforward

activation = x

activations = [x] # list to store all the activations, layer by layer vs
2zs = [] # list to store all the z vectors, layer by layer -

for b, w in zip(self.biases, self.weights):
forward(self, x):

for layer in self.layer:

z = np.dot(w, activation)+b

zs.append(z)

x = layer(x)

activation = sigmoid(z)

activations.append(activation) AL 21
backward pé def update_mini_batch(self, mini_batch, eta):
delta = self. """Update the network's weights and biases by applying model = NEtwork()
sigmoid g gradient descent using backpropagation to a single mini batch. optimizer = torCh'Optim'SGD(mOdel'paramEterS())
nabla_b[-1] = The "mini_batch" is a list of tuples "(x, y)", and "eta"
nabla_w[-1] = is the learning rate."""
Note that i nabla_b = [np.zeros(b.shape) for b in self.biases]
differently nabla_w = [np.zeros(w.shape) for w in self.weights] (y - model(x)).backward()
1 = 1 mean: for x, y in mini_batch: optimizer.step()
second-last delta_nabla b, delta_nabla w = self.backprop(x, y)
scheme in t nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta_nabla b)]
that Pythor nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
for 1 in xrar self.weights = [w-(eta/len(mini_batch))*nw
z = zs[-] for w, nw in zip(self.weights, nabla_w)]
sp = sign self.biases = [b-(eta/len(mini_batch))*nb
delta =1

for b, nb in zip(self.biases, nabla b)]
nabla_b[-1] = delta

nabla_w[-1] = np.dot(delta, activations[-1-1].transpose())

return (nabla_b, nabla_w)

Deep learning frameworks - two reasons

- (1) Autograd
- To train machine learning models, we need to compute gradients
- We can do this by hand in numpy, but it’s really hard and annoying

- (2) GPUs
- Deep learning models require lots of math (mostly matrix multiplications)
- Matrix multiplication runs much faster on GPU

Deep learning frameworks - two reasons

- (1) Autograd
- To train machine learning models, we need to compute gradients
- We can do this by hand in numpy, but it’s really hard and annoying

- (2) GPUs
- Deep learning models require lots of math (mostly matrix multiplications)
Matrix multiplication runs much faster on GPU

Why do we need GPUs?

60
0 ° ® gpu
|‘ ® Qu
= 500 - I.
\
S L
2 400 ..
L) o
g O e—caaa O —————— -®
v 300
E []
= 1
§' 2004 |
& ‘
B \
100 b.\
gl T —— P, —————— 8]
0 T T T T T T
0 100 200 300 400 500
batch size

https://github.com/moritzhambach/CPU-vs-GPU-be
nchmark-on-MNIST

https://github.com/moritzhambach/CPU-vs-GPU-benchmark-on-MNIST

Note on GPUs - The Hardware Lottery

“Hardware lottery: when a research idea wins because it is suited to
the available software and hardware and not because the idea is
superior to alternative research directions.”

—Sara Hooker, The Hardware Lottery

https://arxiv.org/pdf/2009.06489.pdf

GPU Utilization

GPU Utilization (%)
100

80

60

40

20

Hours

10 20 30 40

https://twitter.com/jxmnop/status
/1528889386498424832/photo/1

GPUs vs TPUs

' QUADRO

CPU

GPU

Alternatives to GPUs and TPUs

L]
in
i

445-0084

T8N390.00
cCcH1
2005

IPU
(Graphcore)

Cerebras WSE-2

Half precision (fp16 and bf16)

6.00
- 4.00
(3]
o
(T
»
>
o
=] 2.00
o
[}
0}
Q
w
0.00
BERT Large GNMT V2 NCF ResNet-50 SSD Tacotron2 Transformer
Fine Tuning Training Training V1.5 ResNet-50 Training
Training Training (300x300)
Training

from torch.cuda.amp import autocast
with autocast(dtype=torch.bfloatl6):
loss, outputs = ...

What is autodiff? Intro to computational graph

e = cxd
e=206
L

Oe Oe
9c 2 T
b
oc oc ad
il N == =1
50 o " b
/7

Source: colah.github.io

https://colah.github.io/posts/2015-08-Backprop/

What is autodiff?

PyTorch TensorFlow Jax
(Meta) (Google) (Google)

® TensorFlow ® pytorch + Add comparison

Search term Search term
United States ¥ Past 5 years ¥ All categories ¥ Web Search ¥
Interest over time L RS -

Average Feb 4,2018 Oct 20, 2019 Jul 4,2021

TensorFlow

Create TF Model.
class NeuralNet(Model):

Set layers.
def __init_ (self):
super(NeuralNet, self).__init_ ()
First fully-connected hidden layer.
self.fcl = layers.Dense(n_hidden_1, activation=tf.nn.relu)
First fully-connected hidden layer.
self.fc2 = layers.Dense(n_hidden_2, activation=tf.nn.relu)
Second fully-connecter hidden layer.
self.out = layers.Dense(num_classes)

Set forward pass.
def call(self, x, is_training=False):
x = self.fcl(x)
self.fc2(x)
x = self.out(x)
if not is_training:
tf cross entropy expect logits without softmax, so only
apply softmax when not training.
x = tf.nn.softmax(x)

X

return x

Build neural network model.

neural_net = NeuralNet()

TensorFlow (Hardware)

TPU coral.ai

“t" TensorFlowl ite

http://coral.ai

PyTorch

class Net(nn.Module):
def __init_ (self):

super(Net, self).__init_ ()
self.convl = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropoutl = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fcl = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):

= self.convl(x)

= F.relu(x)

= self.conv2(x)

= F.relu(x)

= F.max_pool2d(x, 2)
self.dropoutl(x)

= torch.flatten(x, 1)
= self.fcl(x)

= F.relu(x)

= self.dropout2(x)

= self.fc2(x)

output = F.log_softmax(x, dim=1)
return output

X X X X X X X X X X X
I

Jax

from flax import linen as nn # Linen API

class CNN(nn.Module):
"""A simple CNN model."""

@nn.compact
def call__(self, x):

X = nn.Conv(features=32, kernel_size=(3, 3))(x)

X = nn.relu(x)

X = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
X = nn.Conv(features=64, kernel_size=(3, 3))(x)

X = nn.relu(x)

X = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
X = X.reshape((x.shape[@], -1)) # flatten

x = nn.Dense(features=256) (x)

X = nn.relu(x)

X = nn.Dense(features=10) (x)

return x

Jax

y 4

Intermediate Representation

Generate Plotform Specific
Machine Code

GPU

Why do we use PyTorch?

Simple API

Great libraries

Need to read/use other people’s code
Less buggy than TensorFlow

You’ll probably use it at your job

PyTorch 2.0

+38% +76% +52%

TIMM TorchBench Huggingface

PyTorch 2.0 Preview (Dec. 6th, 2022)

https://pytorch.org/get-started/pytorch-2.0/

Deep Learning Tasks

The universe of deep learning research

Computer Vision

Depth Image Image
’ i e
Natural Language Processing
© £9
)|
Conversational Question

Tr'anslajt‘hm Cé‘:siﬁc{a‘m"
Audio
it
Clascszﬁ:tion A“drilt’to-hfdiu
Multimodal

Contribute
Document

4 Feature
Question :
Answering Extraction

Answering

Automatic
Speech
Recognition

Contribute
[
Lo

Image-to-Text

(=]
Image-to- Object
Image Detection
(&)
Sentence Summarization

64 models

Similarity

Tabular

Tabular
hih s Classification

B
1]
Visual Question
Text-to-Image Py

" Unconditional

Vidk Image

Classification Generation
53 modl o

Table Question Text

Answering Classification
v
Tabular

Regression

Reinforcement Learning

&
Reinforcement
Learning

Zero-Shot

image
Classification

2

F&a %o

Text Generation

Token
Classification

huggingface.co/tasks

https://huggingface.co/tasks

Deep learning tasks: jei Vision

=l Image Classification

Image classification is the task of assigning a label or class to an entire image.
Images are expected to have only one class for each image. Image classification
models take an image as input and return a prediction about which class the image

belongs to.
Inputs Output
_ 0.514
Egyptian cat
Image ‘;by cat -
Classification - 0.068

Tiger cat
Model £

Deep learning tasks: jei Vision

~ Image Segmentation

Image Segmentation divides an image into segments where each pixel in the image
is mapped to an object. This task has multiple variants such as instance
segmentation, panoptic segmentation and semantic segmentation.

Inputs Output

Image
Segmentation
Model

Deep learning tasks: jei Vision

-~ Object Detection

Object Detection models allow users to identify objects of certain defined classes.
Object detection models receive an image as input and output the images with
bounding boxes and labels on detected objects.

Inputs Output

Object
Detection
Model

Deep learning tasks: ke Vision

Object Detection

http://www.youtube.com/watch?v=Cgxsv1riJhI&t=214

Deep learning tasks: Wil Natural language processing

- Text Classification

Text Classification is the task of assigning a label or class to a given text. Some use
cases are sentiment analysis, natural language inference, and assessing
grammatical correctness.

Inputs Output
Input POSITIVE -
I love Hugging Face! :
Text NEUTRAL —
Classification 0.000

NEGATIVE
Model

Deep learning tasks: Wil Natural language processing

Sentence Similarity

Sentence Similarity is the task of determining how similar two texts are. Sentence
similarity models convert input texts into vectors (embeddings) that capture
semantic information and calculate how close (similar) they are between them. This
task is particularly useful for information retrieval and clustering/grouping.

Inputs Output
Source sentence — —— 0.623
Deep learning is so
Machine learning is so easy. straightforward.
= 0.413
Sentences to compare to Sentence This is so difficult, like
Deep learning is so straightforward. Similarity rocket science.
o o 2 - 0.256
This is so difficult, like rocket Model T canit Believe How wuch T
science. struggled with this.

| can't believe how much |
struggled with this.

Deep learning tasks: Wil Natural language processing

“» Translation

Translation is the task of converting text from one language to another.

Inputs

Input
My name is Omar and | live in
Ziirich.

Translation
Model

Output

Output
Mein Name ist Omar und ich wohne
in Ziirich.

Deep learning tasks: / Audio

&= Music transcription

'III'I'II|I|||I||‘|||“|||||||||II|II||||||| —_—

Over the Rainbow

As played by Joey Alexander

for piano

~
" | = W1 ~ od
(s et =i [bena=lf
‘ =SS .‘J -z ’i; St 0 ‘
ol —_—la iy
[\ o . P ot i T
(Sumg =
" _n ~
I S T Y]
K e e P i Ll S Pa
A a - 2 P
s | e g ese gt =
P = Ei
o — o]
%kg i i | B VT Py B i DA PSR
) " Sl e 7
P55 i e — i P —
==
b "
Ses B e]
L d_‘u— ‘:\;s’ 3 ‘; EaE]
A -
e ;54 FidE-S- 7 A S =S|
= = = T

Deep learning tasks: g Reinforcement learning

2 Reinforcement Learning

Reinforcement learning is the computational approach of learning from action by
interacting with an environment through trial and error and receiving rewards
(negative or positive) as feedback

Inputs Output
State Action
Red traffic light, pedestrians are . Stop the car.
ot teipass Reinforcement

Learning Next State

Yellow light, pedestrians have

Model

crossed.

Deep learning tasks: g Reinforcement learning

https://docs.google.com/file/d/1A8ZVIjhjRkHevpso_umBS9BVW28bljqG/preview

Deep learning tasks: € Multimodal

~ Text-to-Image

Generates images from input text. These models can be used to generate and
modify images based on text prompts.

Inputs

Input
A city above clouds, pastel colors,
Victorian style

Text-to-Image
Model

Transfer Learning

%* Puzzle (15 mins) — Transfer Learning Tutorial

train_loss
test_loss

train_loss
test_loss

https://bit.ly/pdl24puzzle2

